

py2app - Create standalone Mac OS X applications with Python

py2app is a Python setuptools [http://pypi.python.org/pypi/setuptools/] command which will allow you
to make standalone application bundles and plugins from Python
scripts. py2app is similar in purpose and design to py2exe [http://pypi.python.org/pypi/py2exe/] for
Windows.

Contents

	Installation
	Installing with pip

	Installing from source

	Upgrade Notes

	Tutorial
	Create a setup.py file

	Clean up your build directories

	Development with alias mode

	Running your application

	Building for deployment

	Debugging application building

	Dependencies

	Environment in launched applications
	Environment variables added by py2app

	System environment

	Frequently Asked Questions

	Tweaking your Info.plist
	Commonly customized keys

	Specifying customizations

	Universal Binaries

	Example setup.py templates
	Basic

	Cross-platform

	py2app Options
	Option Reference

	Recipes
	Common causes for incompatibility

	Built-in recipes

	Developing Recipes

	Implementation Details
	Argument Parsing

	Run build command

	Dependency resolution via modulegraph

	Apply recipes

	Apply filters

	Produce graphs

	Create the .app bundle

	Include Mach-O dependencies

	Strip the result

	Copy Python configuration

	py2applet

	Release history
	py2app 0.28.6

	py2app 0.28.5

	py2app 0.28.4

	py2app 0.28.3

	py2app 0.28.2

	py2app 0.28.1

	py2app 0.28

	py2app 0.27

	py2app 0.26.1

	py2app 0.26

	py2app 0.25

	py2app 0.24

	py2app 0.23

	py2app 0.22

	py2app 0.21

	py2app 0.20

	py2app 0.19

	py2app 0.18

	py2app 0.17

	py2app 0.16

	py2app 0.15

	py2app 0.14.1

	py2app 0.14

	py2app 0.13

	py2app 0.12

	py2app 0.11

	py2app 0.10

	py2app 0.9

	py2app 0.8.1

	py2app 0.8

	py2app 0.7.4

	py2app 0.7.3

	py2app 0.7.2

	py2app 0.7.1

	py2app 0.7

	py2app 0.6.4

	py2app 0.6.3

	py2app 0.6.2

	py2app 0.6.1

	py2app 0.6

	py2app 0.5.2

	py2app 0.5.1

	py2app 0.5

	py2app 0.4.3

	py2app 0.4.2

	py2app 0.4.0

	py2app 0.3.6

	py2app 0.3.5

	py2app 0.3.4

	py2app 0.3.3

	py2app 0.3.2

	py2app 0.3.1

	py2app 0.3.0

	py2app 0.2.1

	py2app 0.2.0

	py2app 0.1.9

	py2app 0.1.8

	py2app 0.1.7

	py2app 0.1.6

	py2app 0.1.5

	py2app 0.1.4

	py2app 0.1.3

	py2app 0.1.2

	py2app 0.1.1

	py2app 0.1

Online Resources

There are several online resources to help you get along with py2app.

	Mailing list:

	http://www.python.org/community/sigs/current/pythonmac-sig/

	Issue tracker:

	https://github.com/ronaldoussoren/py2app/issues

	Source code repository:

	https://github.com/ronaldoussoren/py2app

	PyPI Entry:

	https://pypi.org/project/py2app/

If you’re looking for help, pay special attention to the examples
folder in the source, which demonstrates many common use cases.

License

py2app may be distributed under the MIT [http://www.opensource.org/licenses/mit-license.php] or PSF [http://www.python.org/psf/license.html] open source
licenses.

Copyright (c) 2004-2006 Bob Ippolito <bob at redivi.com>.

Copyright (c) 2010-2012 Ronald Oussoren <ronaldoussoren at mac.com>.

Installation

Installing with pip

To install py2app using pip [http://www.pip-installer.org/en/latest/], or to upgrade to the latest released version
of py2app:

$ pip3 install -U py2app

Installing from source

To install py2app from source, simply use the normal procedure for
installing any Python package. Since py2app uses setuptools [http://pypi.python.org/pypi/setuptools/],
all dependencies (including setuptools [http://pypi.python.org/pypi/setuptools/] itself) will be automatically
acquired and installed for you as appropriate:

$ python setup.py install

Upgrade Notes

The setup.py template has changed slightly in py2app 0.3 in order
to accommodate the enhancements brought on by setuptools [http://pypi.python.org/pypi/setuptools/]. Old setup.py
scripts look like this:

from distutils.core import setup
import py2app

setup(
 app=["myscript.py"],
)

New py2app scripts should look like this:

from setuptools import setup
setup(
 app=["myscript.py"],
 setup_requires=["py2app"],
)

Tutorial

Converting your scripts to Mac OS X applications is easy with py2app.

Create a setup.py file

The first step is to create a setup.py file for your script. setup.py
is the “project file” that tells setuptools [http://pypi.python.org/pypi/setuptools/] everything it needs to know
to build your application. We’ll use the py2applet script to do that:

$ py2applet --make-setup MyApplication.py
Wrote setup.py

If your application has an icon (in .icns format) or data files that it
requires, you should also specify them as arguments to py2applet.

Clean up your build directories

Before starting development or switching development modes it’s usually
a good idea to ensure that your build and dist directories are
cleaned out:

$ rm -rf build dist

Development with alias mode

Alias mode (the -A or --alias option) instructs py2app to build
an application bundle that uses your source and data files in-place. It
does not create standalone applications, and the applications built in
alias mode are not portable to other machines. This mode is similar to the
setuptools [http://pypi.python.org/pypi/setuptools/] develop command, or Xcode [http://developer.apple.com/tools/xcode/]’s zero-link feature.

To build the application in alias mode, execute setup.py with the
py2app command and specify the -A option (or --alias):

$ python setup.py py2app -A

After this, py2app will spit out a bunch of messages to your terminal
and you’ll end up with new build and dist folders. The build
folder contains build sludge that you’ll never need to touch,
and the dist folder contains your application bundle.
The application bundle will be named after your script; if your script was
named MyApplication.py, then your application bundle will be named
MyApplication.app. Note that Finder displays application bundles without
the .app extension.

You only need to run this command again when you add data files or change
options. Changes to your source code won’t require rebuilding!

Running your application

During development, it’s often useful to have your application
attached to the Terminal. This allows you to better debug it, e.g. by
inserting import pdb; pdb.set_trace() into your code to inspect it
interactively at runtime.

To run your application directly from the Terminal:

$./dist/MyApplication.app/Contents/MacOS/MyApplication

To start your application normally with LaunchServices, you can use the
open tool:

$ open -a dist/MyApplication.app

If you want to specify “open document” events, to simulate dropping files on
your application, just specify them as additional arguments to open.

You may of course also double-click your application from Finder.

When run normally, your application’s stdout and stderr output will go to the
Console logs. To see them, open the Console application:

$ open -a Console

Building for deployment

After you’ve got your application working smoothly in alias mode, it’s time
to start building a redistributable version. Since we’re switching from
alias mode to normal mode, you should remove your build and dist
folders as above.

Building a redistributable application consists of simply running the
py2app command:

$ python setup.py py2app

This will assemble your application as dist/MyApplication.app. Since
this application is self-contained, you will have to run the py2app
command again any time you change any source code, data files, options, etc.

The easiest way to wrap your application up for distribution at this point
is simply to right-click the application from Finder and choose
“Create Archive”.

Debugging application building

The py2app builder won’t always generate a working application out of the box for
various reasons. An incomplete build generally results in an application
that won’t launch, most of the time with a generic error dialog from
py2app.

The easiest way to debug build problems is to start the application
directly in the Terminal.

Given an application “MyApp.app” you can launch the application as
follows:

$ dist/MyApp.app/Contents/MacOS/MyApp

This will start the application as a normal shell command, with
output from the application (both stdout and stderr) shown in
the Terminal window.

Some common problems are:

	An import statement fails due to a missing module or package

This generally happens when the dependency cannot be found
by the source code analyzer, either due to dynamic imports
(using __import__() or importlib to load a module),
or due to imports in a C extension.

In both cases use --includes or --packages to add
the missing module to the application.

If this is needed for a project on PyPI: Please file a bug
on GitHub, that way we can teach py2app to do the right thing.

	C library cannot find resources

This might happen when a C library looks for resources in
a fixed location instead to looking relative to the library
itself. There are often APIs to tell the library which location
it should use for resources.

If this needed for a project on PyPI: Please file a bug
on GitHub, including the workaround, that way we can teach
py2app to the the right thing.

Dependencies

Note that these dependencies should automatically be satisfied by the
installation procedure and do not need to be acquired separately.

	setuptools:

	setuptools [http://pypi.python.org/pypi/setuptools/] provides enhancements to distutils [http://docs.python.org/lib/module-distutils.html].

	macholib:

	macholib [http://pypi.python.org/pypi/macholib/] reads and writes the Mach-O object file format.
Used by py2app to build a dependency graph of dyld and framework
dependencies for your application, and then to copy them into your
application and rewrite their load commands to be @executable_path
relative. The end result is that your application is going to be
completely standalone beyond a default install of Mac OS X. You no
longer have to worry about linking all of your dependencies statically,
using install_name_tool, etc. It’s all taken care of!

	modulegraph:

	modulegraph [http://pypi.python.org/pypi/modulegraph/] is a replacement for the Python standard library
modulefinder [http://docs.python.org/lib/module-modulefinder.html]. Stores the module dependency tree in a graph data
structure and allows for advanced filtering and analysis capabilities,
such as GraphViz [http://www.research.att.com/sw/tools/graphviz/] dot output.

	altgraph:

	altgraph [http://pypi.python.org/pypi/altgraph/] is a fork of Istvan Albert [http://www.personal.psu.edu/staff/i/u/iua1/]’s graphlib, and it used
internally by both macholib [http://pypi.python.org/pypi/macholib/] and modulegraph [http://pypi.python.org/pypi/modulegraph/]. It contains
several small feature and performance enhancements over the original
graphlib.

Environment in launched applications

Environment variables added by py2app

	RESOURCEPATH

Filesystem path for the “Resources” folder inside the application bundle

System environment

When the application is launched normally (double clicking in the Finder,
using the open(1) command) the application will be launched with a minimal
shell environment, which does not pick up changes to the environment in the
user’s shell profile.

The “emulate_shell_environment” option will run a login shell in the background
to fetch exported environment varialbles and inject them into your application.

It is also possible to inject extra variables into the environment by using
the LSEnvironment key in the Info.plist file, for example like so:

setup(
 name='BasicApp',
 app=['main.py'],
 options=dict(py2app=dict(
 plist=dict(
 LSEnvironment=dict(
 LANG='nl_NL.latin1',
 LC_CTYPE='nl_NL.UTF-8',
 EXTRA_VAR='hello world',
 KNIGHT='ni!',
)
)
)),
)

Frequently Asked Questions

	“Mach-O header may be too large to relocate”

Py2app will fail with a relocation error when
it cannot rewrite the load commands in shared
libraries and binaries copied into the application
or plugin bundle.

This error can be avoided by rebuilding binaries
with enough space in the Mach-O headers, either
by using the linker flag “-headerpad_max_install_names”
or by installing shared libraries in a deeply
nested location (the path for the install root needs
to be at least 30 characters long).

	M1 Macs and libraries not available for arm64

A lot of libraries are not yet available as arm64 or
universal2 libraries.

For applications using those libraries you can
create an x86_64 (Intel) application instead:

	Create a new virtual environment and activate this

	Use arch -x86_64 python -mpip install ... to
install libraries.

The arch command is necessary here to ensure
that pip selects variants that are compatible with
the x86_64 architecture instead of arm64.

	Use arch -x86_64 python setup.py py2app --arch x86_64
to build

This results in an application bundle where the
launcher is an x86_64 only binary, and where included
C extensions and libraries are compatible with that architecture
as well.

	Using Cython with py2app

Cython generates C extensions. Because of that the dependency
walker in py2app cannot find import statements in “.pyx” files”.

To create working applications you have to ensure that
dependencies are made visible to py2app, either by adding
import statements to a python file that is included in the
application, or by using the “includes” option.

See examples/PyQt/cython_app in the repository for an
example of the latter.

	Dark mode support

Note

As of py2app 0.26 the stub executables are compiled with
a modern SDK, with an automatic fallback to the older binaries
for old builds of Tkinter.

 Tweaking your Info.plist

Tweaking your Info.plist

It’s often useful to make some tweaks to your Info.plist file to change how
your application behaves and interacts with Mac OS X. The most complete
reference for the keys available to you is in Apple’s
Runtime Configuration Guidelines [https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPRuntimeConfig/000-Introduction/introduction.html#//apple_ref/doc/uid/10000170i].

Commonly customized keys

Here are some commonly customized property list keys relevant to py2app
applications:

	CFBundleDocumentTypes:

	An array of dictionaries describing document types supported by the bundle.
Use this to associate your application with opening or editing document
types, and/or to assign icons to document types.

	CFBundleGetInfoString:

	The text shown by Finder’s Get Info panel.

	CFBundleIdentifier:

	The identifier string for your application (in reverse-domain syntax),
e.g. "org.pythonmac.py2app".

	CFBundleURLTypes:

	An array of dictionaries describing URL schemes supported by the bundle.

	LSBackgroundOnly:

	If True, the bundle will be a faceless background application.

	LSUIElement:

	If True, the bundle will be an agent application. It will not appear
in the Dock or Force Quit window, but still can come to the foreground
and present a UI.

	NSServices:

	An array of dictionaries specifying the services provided by the
application.

Specifying customizations

There are three ways to specify Info.plist customizations to py2app.

You can specify an Info.plist XML file on the command-line with the
--plist option, or as a string in your setup.py:

setup(
 app=['MyApplication.py'],
options=dict(py2app=dict(
 plist='Info.plist',
)),
)

You may also specify the plist as a Python dict in the setup.py:

setup(
 app=['MyApplication.py'],
options=dict(py2app=dict(
 plist=dict(
 LSPrefersPPC=True,
),
)),
)

Or you may use a hybrid approach using the standard library plistlib module:

from plistlib import Plist
plist = Plist.fromFile('Info.plist')
plist.update(dict(
 LSPrefersPPC=True,
))
setup(
 app=['MyApplication.py'],
options=dict(py2app=dict(
 plist=plist,
)),
)

Universal Binaries

Note

the documentation about universal binaries is outdated!

 Example setup.py templates

Example setup.py templates

Basic

The simplest possible setup.py script to build a py2app application
looks like the following:

"""
py2app build script for MyApplication

Usage:
 python setup.py py2app
"""
from setuptools import setup
setup(
 app=["MyApplication.py"],
setup_requires=["py2app"],
)

The py2applet script can create setup.py files of this variety
for you automatically:

$ py2applet --make-setup MyApplication.py

Cross-platform

Cross-platform applications can share a setup.py script for both
py2exe [http://pypi.python.org/pypi/py2exe/] and py2app. Here is an example
setup.py that will build an application on Windows or Mac OS X:

 """
 py2app/py2exe build script for MyApplication.

 Will automatically ensure that all build prerequisites are available
 via ez_setup

 Usage (Mac OS X):
 python setup.py py2app

 Usage (Windows):
 python setup.py py2exe
 """
 import sys
 from setuptools import setup

 mainscript = 'MyApplication.py'

 if sys.platform == 'darwin':
 extra_options = dict(
 setup_requires=['py2app'],
 app=[mainscript],
 # Cross-platform applications generally expect sys.argv to
 # be used for opening files.
 # Don't use this with GUI toolkits, the argv
 # emulator causes problems and toolkits generally have
 # hooks for responding to file-open events.
 options=dict(py2app=dict(argv_emulation=True)),
)
 elif sys.platform == 'win32':
 extra_options = dict(
 setup_requires=['py2exe'],
 app=[mainscript],
)
else:
 extra_options = dict(
 # Normally unix-like platforms will use "setup.py install"
 # and install the main script as such
 scripts=[mainscript],
)

setup(
 name="MyApplication",
 **extra_options
)

 py2app Options

py2app Options

Options can be specified to py2app to influence the build procedure in three
different ways:

At the command line:

$ python setup.py py2app --includes=os,platform

In your setup.py:

setup(
 app=['MyApplication.py'],
 options=dict(py2app=dict(
 includes=["os", "platform"]
)),
)

In a setup.cfg file:

[py2app]
includes=os,platform

Note that when translating command-line options for use in setup.py, you
must replace hyphens (-) with underscores (_). setup.cfg files
may use either hyphens or underscores, but command-line options must always
use the hyphens.

Lists of values are a comma seperated sequence of names on the command-line and
in setup.cfg, and regular python lists in setup.py (as shown in the earlier example).

Option Reference

To enumerate the options that py2app supports, use the following command:

$ python setup.py py2app --help

Options for ‘py2app’ command:

Options

	Command-line

	Setup.py

	Value

	Description

	--optimize

	optimize

	level (integer)

	Specifies the optimization level for the Pytho interpreter
level 0 to disable, level 1 for python -O, and level 2
for python -OO. Defaults to the optimation level of the
process running py2app.

	--includes

	includes

	list of module names

	A list of Python modules to include even if they are
not detected by dependency checker. Packages in this list
are ignored.

	--packages

	packages

	list of package names

	A list of Python packages to include even if they are
not detected by dependency checker. The whole package will
be included.

	--excludes

	excludes

	list of module or package names

	A list of Python modules or packages to exclude even if they are
detected by dependency checker.

	--matplotlib-backends

	matplotlib_backends

	List of matplotlib backend names

	The matplotlib backends that will be included when matplotlib is
one of the included libraries. The default is to include all of
matplotlib.

Use ‘*’ to include all backends, and “-” to only include backends that
are explicitly included.

	--qt-plugins

	qt_plugins

	List of Qt plugins

	Specifies plugins to include in an application using PyQt4.

	--dylib-excludes

	dylib_excludes

	A list of shared libraries or frameworks

	The specified libraries and frameworks will not be included
in the output.

	--frameworks

	frameworks

	A list of shared libraries or frameworks

	The specified libraries and frameworks will be included
in the output.

	--iconfile

	iconfile

	Path the the icon file

	Specify the icon to use for the application, the “.icns” suffix
may be left off. The default is to use a generic icon.

	--plist

	plist

	Path to a plist template, or (in setup.py) a Python dictionary.

	Specify the contents of the Info.plist. Py2app will add some information
to the file when it is copied into the output.

	--datamodels

	datamodels

	List of xcdatamodels

	The specified xcdatamodel files will be compiled and included
into the bundle Resources

	--mappingmodels

	mappingmodels

	List of xcmappingmodels

	The specified xcmappingmodel files will be compiled and included
into the bundle Resources

	--resources

	resources

	List of files and folders

	Specifies additional files and folders to include in the bundle
Resource. Do not use this to copy additional code.

	--extension

	extensionn

	file extension, includding the dot

	The extension to use of the output, defaults to “.app” for applications
and “.plugin” for plugins. Commonly only used for plugins.

	--arch

	arch

	“intel”, “fat”, “universal”, “universal2”, “i386”, “x86_64”, “ppc”

	The (set of) architecture(s) to use for the main executable in the
output. This should be a subset of the architectures supported by the
python interpreter.

	--no-strip

	no_strip

	None (use True in setup.py)

	Don’t strip debug information and local symbols from the output. Default
is to strip.

	--semi-standalone

	semi_standalone

	None (use True in setup.py)

	Create output that depends on an existing installation of Python, but
does contain all code and dependencies.

	--alias

	alias

	None (use True in setup.py)

	Create output that depends on an existing installation of Python and
uses the sources outside of the bundle.

This is only useful during development, you can update source files
and relaunche the application without rebuilding the bundle.

Do not use for distribution

	--graph

	
	

	None

	Emit a “.dot” file with the module dependency graph after the build. The output
will be stored next to the regular output.

	--xref

	xref

	None

	Emit a module cross reference as HTML. The output
will be stored next to the regular output.

	--report-missing-from-imports

	
	

	None (use True in setup.py)

	Include a list of missing names for from module import name in
the output at the end of the py2app run.

	--no-report-missing-conditional-import

	
	

	None

	Do not include missing modules that might be conditionally imported
in the output at the end of the py2app run.

	--use-faulthandler

	use_faulthandler

	None (use True in setup.py)

	Enable the Python faulthandler, requires Python 3.3 or later.

	--no-chdir

	no_chdir

	None

	Don’t change the working directory to the bundle Resource
directory. This option is always enabled in plugins.

	--argv-emulation

	argv_emulation

	None (use True in setup.py)

	Fill sys.argv during program launch.

The argv emulator runs a small event loop during program launch
to intercept file-open and url-open events. The to-be-opened
resources will be added to sys.argv

WARNING: Do no use this option when the program uses a
GUI toolkit. The emulator tends to confuse GUI toolkits, and
most GUI toolkits have APIs to react to these events at runtime
(for example to open a file when your program is already running).

This option cannot be enabled for plugins.

	--emulate-shell-environment

	emulate_shell_environment

	None (use True in setup.py)

	Set up environment variables as if the program was launched from
a fresh Terminal window. Don’t use this with plugins.

By default applications inherit the environment from the application
launcher (when double clicking the application in the Finder), which
is does not include environment variables set in the users shell profile.

Only use this when the application needs to access environment varialbes
set in the Terminal. This option is not meant for general use.

	--use-pythonpath

	use_pythonpath

	None (use True in setup.py)

	Allow the PYTHONPATH environment varialble to affect the interpreter’s
search path.

This is generally not useful, PYTHONPATH is not included in the minimal
shell environment used by the application launcher.

	--site-packages

	site_packages

	None (use True in setup.py)

	Include the system and user site-packages in sys.path

Note that this makes the bundle less standalone, packages installed
on a users’s system may affect the bundle.

	--extra-script

	extra_scripts

	List of file names for scripts

	The mentioned scripts will be included in the Contents/MacOS.

For Python scripts the file in Contents/MacOS will be a binary
that launches the script using the Python interpreter and environment
from the bundle.

	--argv-inject

	argv_inject

	values to inject, a single string will be split using shlex.split

	The values will be inserted in to sys.argv after argv[0].

	--bdist-base

	bdist_base

	directory name

	base directory for build library (default is build)

	--dist-dir

	dist_dir

	directory name

	directory to put the final built distributions in (default is dist)

	--include-plugins

	include_plugins

	List of plugin bundles

	The plugin bundles will be copied into the application bundle at
the expected location for the type of plugin

	--redirect-stdout-to-asl

	redirect_stdout_to_asl

	None (use True in setup.py)

	Forward the stdout/stderr streams to Console.app using ASL

	--force-system-tk

	force_system_tk

	None (use True in setup.py)

	Ensures that Tkinter will be linked to the system copy
of Tcl and Tk.

This makes the bundle smaller, but the system version of Tcl/Tk
is ancient an buggy. Don’t use this option.

This is a legacy option that will be dropped in a future version

	--prefer-ppc

	prefer_ppc

	None (use True in setup.py)

	Force the application to run translated on i386

This is a legacy option that will be dropped in a future version

	--debug-modulegraph

	debug_modulegraph

	None (use True in setup.py)

	Drop into the pdb debugger after building the module graph

This is an development option

	--debug-skip-macholib

	debug_skip_macholib

	None (use True in setup.py)

	Don’t run macholib. The output will not be standalone.

This is an development option

Options to specify which objects to include or exclude (the first part of the table
above) are used to finetune the behaviour of py2app and should generally not be
necessary. Please file an issue on the py2app tracker if a package on PyPI requires
one of these options, which allows me to change py2app to do the right thing
automatically.

 Recipes

Recipes

py2app includes a mechanism for working around package incompatibilities,
and stripping unwanted dependencies automatically. These are called recipes.

A future version of py2app will support packaging of Python Eggs [http://peak.telecommunity.com/DevCenter/PythonEggs]. Once
this is established, recipes will be obsolete since eggs contain all of the
metadata needed to build a working standalone application.

Common causes for incompatibility

Some Python packages are written in such a way that they aren’t compatible
with being packaged. There are two main causes of this:

	Using __import__ or otherwise importing code without usage of the
import statement.

	Requiring in-package data files

Built-in recipes

	cjkcodecs:

	All codecs in the package are imported.

	docutils:

	Several of its internal components are automatically imported
(languages, parsers, readers, writers,
parsers.rst.directives, parsers.rst.langauges).

	matplotlib:

	A dependency on pytz.zoneinfo.UTC is implied, and the matplotlib
package is included in its entirety out of the zip file.

	numpy:

	The numpy package is included in its entirety out of the zip file.

	PIL:

	Locates and includes all image plugins (Python modules that end with
ImagePlugin.py), removes unwanted dependencies on Tkinter.

	pydoc:

	The implicit references on the several modules are removed (Tkinter,
tty, BaseHTTPServer, mimetools, select, threading,
ic, getopt, nturl2path).

	pygame:

	Several data files that are included in the zip file where pygame can
find them (freesansbold.ttf, pygame_icon.tiff,
pygame_icon.icns).

	PyOpenGL:

	If the installed version of PyOpenGL reads a version file to determine
its version, then the OpenGL package is included in its entirety out of
the zip file.

	scipy:

	The scipy and numpy packages are included in their entirety
out of the zip file.

	sip:

	If sip is detected, then all sip-using packages are included
(e.g. PyQt).

Developing Recipes

py2app currently searches for recipes only in the py2app.recipes module.
A recipe is an object that implements a check(py2app_cmd, modulegraph)
method.

	py2app_cmd:

	The py2app command instance (a subclass of setuptools.Command).
See the source for py2app.build_app for reference.

	modulegraph:

	The modulegraph.modulegraph.ModuleGraph instance.

A recipe should return either None or a dict instance.

If a recipe returns None it should not have performed any actions with
side-effects, and it may be called again zero or more times.

If a recipe returns a dict instance, it will not be called again. The
returned dict may have any of these optional string keys:

	filters:

	A list of filter functions to be called with every module in the
modulegraph during flattening. If the filter returns False, the module
and any of its dependencies will not be included in the output. This is
similar in purpose to the excludes option, but can be any predicate
(e.g. to exclude all modules in a given path).

	loader_files:

	Used to include data files inside the site-packages.zip. This is a
list of 2-tuples: [(subdir, files), ...]. subdir is the path
within site-packages.zip and files is the list of files to include
in that directory.

	packages:

	A list of package names to be included in their entirety outside of the
site-packages.zip.

	prescripts:

	A list of additional Python scripts to run before initializing the main
script. This is often used to monkey-patch included modules so that they
work in a frozen environment. The prescripts may be module names,
file names, or file-like objects containing Python code (e.g. StringIO).
Note that if a file-like object is used, it will not currently be scanned
for additional dependencies.

 Implementation Details

Implementation Details

For those interested in the implementation of py2app, here’s a quick
rundown of what happens.

Argument Parsing

When setup.py is run, the normal setuptools [http://pypi.python.org/pypi/setuptools/] / distutils [http://docs.python.org/lib/module-distutils.html]
sys.argv parsing takes place.

Run build command

The build command is run to ensure that any extensions specified in the
setup.py will be built prior to the py2app command. The build
directory will be added to sys.path so that modulegraph will find
the extensions built during this command.

Dependency resolution via modulegraph

The main script is compiled to Python bytecode and analyzed by modulegraph
for import bytecode. It uses this to build a dependency graph of all
involved Python modules.

The dependency graph is primed with any --includes, --excludes, or
--packages options.

Apply recipes

All of the Recipes will be run in order to find library-specific tweaks
necessary to build the application properly.

Apply filters

All filters specified in recipes or otherwise added to the py2app Command
object will be run to filter out the dependency graph.

The built-in filter not_system_filter will
always be run for every application built. This ensures that the contents
of your Mac OS X installation (/usr/, /System/, excluding
/usr/local/) will be excluded.

If the --semi-standalone option is used (forced if a vendor Python is
being used), then the not_stdlib_filter will be automatically added to
ensure that the Python standard library is not included.

Produce graphs

If the --xref or --graph option is used, then the modulegraph is
output to HTML or GraphViz [http://www.research.att.com/sw/tools/graphviz/] respectively. The .html or .dot file
will be in the dist folder, and will share the application’s name.

Create the .app bundle

An application bundle will be created with the name of your application.

The Contents/Info.plist will be created from the dict or filename
given in the plist option. py2app will fill in any missing keys as
necessary.

A __boot__.py script will be created in the Contents/Resources/ folder
of the application bundle. This script runs any prescripts used by the
application and then your main script.

If the --alias option is being used, the build procedure is finished.

The main script of your application will be copied as-is to the
Contents/Resources/ folder of the application bundle. If you want to
obfuscate anything (by having it as a .pyc in the zip), then you
must not place it in the main script!

Packages that were explicitly included with the packages option, or by
a recipe, will be placed in Contents/Resources/lib/python2.X/.

A zip file containing all Python dependencies is created at
Contents/Resources/Python/site-packages.zip.

Extensions (which can’t be included in the zip) are copied to the
Contents/Resources/lib/python2.X/lib-dynload/ folder.

Include Mach-O dependencies

macholib [http://pypi.python.org/pypi/macholib/] is used to ensure the application will run on other computers
without the need to install additional components. All Mach-O
files (executables, frameworks, bundles, extensions) used by the application
are located and copied into the application bundle.

The Mach-O load commands for these Mach-O files are then rewritten to be
@executable_path/../Frameworks/ relative, so that dyld knows to find
them inside the application bundle.

Python.framework is special-cased here so as to only include the bare
minimum, otherwise the documentation, entire standard library, etc. would’ve
been included. If the --semi-standalone option or a vendor Python is used,
then the Python.framework is ignored. All other vendor files (those in
/usr/ or /System/ excluding /usr/local/) are also excluded.

Strip the result

Unless the --no-strip option is specified, all Mach-O files in the
application bundle are stripped using the strip tool. This removes
debugging symbols to make your application smaller.

Copy Python configuration

This only occurs when not using a vendor Python or using the
--semi-standalone option.

The Python configuration, which is used by distutils and pkg_resources
is copied to Contents/Resources/lib/python2.X/config/. This is needed
to acquire settings relevant to the way Python was built.

 py2applet

py2applet

The py2applet script can be used either to create an application
quickly in-place, or to generate a setup.py file that does the same.

In normal usage, simply run py2applet with the options you would
normally pass to the py2app command, plus the names of any scripts,
packages, icons, plist files, or data files that you want to generate
the application from.

The first .py file is the main script. The application’s name will
be derived from this main script.

The first .icns file, if any, will be used as the application’s icon
(equivalent to using the --iconfile option).

Any folder given that contains an __init__.py will be wholly included as
out of the zip file (equivalent to using the --packages option).

Any other file or folder will be included in the Contents/Resources/
directory of the application bundle (equivalent to the --resources
option).

If --make-setup is passed as the first option to py2applet, it will
generate a setup.py file that would do the above if run. This can
be used to quickly generate a setup.py for a new project, or if you
need to tweak a few complex options. The Tutorial demonstrates this
functionality.

 Release history

Release history

py2app 0.28.6

	Fix support for Python 2.7

These are best-effort changes, I no longer have a setup where I
can perform a good test run for Python 2.7.

	Introduce support for Python 3.12

py2app 0.28.5

	#476: Update black recipe

The black recipe no longer worked with recent versions of black
due to relying on a metadata file from the “egg” spec that’s not
included by black’s current build tool.

The recipe now scans the python code that’s next to the mypyc
compiled extension modules for dependencies and uses that to update
the dependency graph. This should ensure that new dependencies of
black will be automaticly detected in the future.

	Update wheel dependencies

py2app 0.28.4

	Fix incompatibility with Python 3.11

py2app 0.28.3

	#453: Fix crash in py2applet when specifying a directory to
include in the application bundle.

py2app 0.28.2

	Fix incompatibility with recent setuptools

py2app 0.28.1

	#448: Fix typo in qt6 recipe

	#444: Fix issue where the standard output and standard error streams
are set to non-blocking when using py2app.

For some reason the “ibtool” command (part of Xcode) sets these streams
to non-blocking when compiling NIB files. I’ve added a context manager that
resets the non-blocking status of these streams.

	PR #446: Fix Qt5 recipe for newer versions of PyQt5

PR by kangi.

	#447: Fix error when using py2applet --help

Bug was introduced in the fix for #414

py2app 0.28

Note

This is the last version of py2app with compatibility with
Python 2.7. Future versions will require Python 3.6 or later.

 Index

Index

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 py2app - Create standalone Mac OS X applications with Python

 		
 Installation

 		
 Installing with pip

 		
 Installing from source

 		
 Upgrade Notes

 		
 Tutorial

 		
 Create a setup.py file

 		
 Clean up your build directories

 		
 Development with alias mode

 		
 Running your application

 		
 Building for deployment

 		
 Debugging application building

 		
 Dependencies

 		
 Environment in launched applications

 		
 Environment variables added by py2app

 		
 System environment

 		
 Frequently Asked Questions

 		
 Tweaking your Info.plist

 		
 Commonly customized keys

 		
 Specifying customizations

 		
 Universal Binaries

 		
 Example setup.py templates

 		
 Basic

 		
 Cross-platform

 		
 py2app Options

 		
 Option Reference

 		
 Recipes

 		
 Common causes for incompatibility

 		
 Built-in recipes

 		
 Developing Recipes

 		
 Implementation Details

 		
 Argument Parsing

 		
 Run build command

 		
 Dependency resolution via modulegraph

 		
 Apply recipes

 		
 Apply filters

 		
 Produce graphs

 		
 Create the .app bundle

 		
 Include Mach-O dependencies

 		
 Strip the result

 		
 Copy Python configuration

 		
 py2applet

 		
 Release history

 		
 py2app 0.28.6

 		
 py2app 0.28.5

 		
 py2app 0.28.4

 		
 py2app 0.28.3

 		
 py2app 0.28.2

 		
 py2app 0.28.1

 		
 py2app 0.28

 		
 py2app 0.27

 		
 py2app 0.26.1

 		
 py2app 0.26

 		
 py2app 0.25

 		
 py2app 0.24

 		
 py2app 0.23

 		
 py2app 0.22

 		
 py2app 0.21

 		
 py2app 0.20

 		
 py2app 0.19

 		
 py2app 0.18

 		
 py2app 0.17

 		
 py2app 0.16

 		
 py2app 0.15

 		
 py2app 0.14.1

 		
 py2app 0.14

 		
 py2app 0.13

 		
 py2app 0.12

 		
 py2app 0.11

 		
 py2app 0.10

 		
 py2app 0.9

 		
 py2app 0.8.1

 		
 py2app 0.8

 		
 py2app 0.7.4

 		
 py2app 0.7.3

 		
 py2app 0.7.2

 		
 py2app 0.7.1

 		
 py2app 0.7

 		
 py2app 0.6.4

 		
 py2app 0.6.3

 		
 py2app 0.6.2

 		
 py2app 0.6.1

 		
 py2app 0.6

 		
 py2app 0.5.2

 		
 py2app 0.5.1

 		
 py2app 0.5

 		
 py2app 0.4.3

 		
 py2app 0.4.2

 		
 py2app 0.4.0

 		
 py2app 0.3.6

 		
 py2app 0.3.5

 		
 py2app 0.3.4

 		
 py2app 0.3.3

 		
 py2app 0.3.2

 		
 py2app 0.3.1

 		
 py2app 0.3.0

 		
 py2app 0.2.1

 		
 py2app 0.2.0

 		
 py2app 0.1.9

 		
 py2app 0.1.8

 		
 py2app 0.1.7

 		
 py2app 0.1.6

 		